3.1.6 \(\int \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx\) [6]

3.1.6.1 Optimal result
3.1.6.2 Mathematica [C] (verified)
3.1.6.3 Rubi [A] (verified)
3.1.6.4 Maple [B] (warning: unable to verify)
3.1.6.5 Fricas [B] (verification not implemented)
3.1.6.6 Sympy [F]
3.1.6.7 Maxima [F(-2)]
3.1.6.8 Giac [F]
3.1.6.9 Mupad [F(-1)]

3.1.6.1 Optimal result

Integrand size = 24, antiderivative size = 574 \[ \int \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=-\frac {\sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \arctan \left (\frac {b \sqrt {a^2+b^2-2 a c+c^2}-\left (b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}+\frac {\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}-\frac {\sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \text {arctanh}\left (\frac {b \sqrt {a^2+b^2-2 a c+c^2}+\left (b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e} \]

output
arctanh(1/2*(b+2*c*tan(e*x+d))/c^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/ 
2))*c^(1/2)/e-1/2*arctan(1/2*(b*(a^2-2*a*c+b^2+c^2)^(1/2)-(b^2+(a-c)*(a-c+ 
(a^2-2*a*c+b^2+c^2)^(1/2)))*tan(e*x+d))/(a^2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/ 
(a^2+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)) 
)^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))*(a^2+b^2+c*(c-(a^2-2*a*c+b^ 
2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a^2-2*a*c+b^2+c^2) 
^(1/4)/e*2^(1/2)-1/2*arctanh(1/2*(b*(a^2-2*a*c+b^2+c^2)^(1/2)+(b^2+(a-c)*( 
a-c-(a^2-2*a*c+b^2+c^2)^(1/2)))*tan(e*x+d))/(a^2-2*a*c+b^2+c^2)^(1/4)*2^(1 
/2)/(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1 
/2)))^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))*(a^2+b^2+c*(c+(a^2-2*a* 
c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a^2-2*a*c+b^2+ 
c^2)^(1/4)/e*2^(1/2)
 
3.1.6.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.15 (sec) , antiderivative size = 228, normalized size of antiderivative = 0.40 \[ \int \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\frac {-i \sqrt {a-i b-c} \text {arctanh}\left (\frac {2 a-i b+(b-2 i c) \tan (d+e x)}{2 \sqrt {a-i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )+i \sqrt {a+i b-c} \text {arctanh}\left (\frac {2 a+i b+(b+2 i c) \tan (d+e x)}{2 \sqrt {a+i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )+2 \sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 e} \]

input
Integrate[Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]
 
output
((-I)*Sqrt[a - I*b - c]*ArcTanh[(2*a - I*b + (b - (2*I)*c)*Tan[d + e*x])/( 
2*Sqrt[a - I*b - c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])] + I*Sqrt 
[a + I*b - c]*ArcTanh[(2*a + I*b + (b + (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a + 
 I*b - c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])] + 2*Sqrt[c]*ArcTan 
h[(b + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e* 
x]^2])])/(2*e)
 
3.1.6.3 Rubi [A] (verified)

Time = 28.25 (sec) , antiderivative size = 637, normalized size of antiderivative = 1.11, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.458, Rules used = {3042, 4853, 1321, 25, 1092, 219, 1369, 25, 1363, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {a+b \tan (d+e x)+c \tan (d+e x)^2}dx\)

\(\Big \downarrow \) 4853

\(\displaystyle \frac {\int \frac {\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 1321

\(\displaystyle \frac {c \int \frac {1}{\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)-\int -\frac {a-c+b \tan (d+e x)}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {c \int \frac {1}{\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)+\int \frac {a-c+b \tan (d+e x)}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {\int \frac {a-c+b \tan (d+e x)}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)+2 c \int \frac {1}{4 c-\frac {(b+2 c \tan (d+e x))^2}{c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\frac {b+2 c \tan (d+e x)}{\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}}{e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\int \frac {a-c+b \tan (d+e x)}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}\)

\(\Big \downarrow \) 1369

\(\displaystyle \frac {\frac {\int -\frac {b^2-\sqrt {a^2-2 c a+b^2+c^2} \tan (d+e x) b+(a-c) \left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right )}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{2 \sqrt {a^2-2 a c+b^2+c^2}}-\frac {\int -\frac {b^2+\sqrt {a^2-2 c a+b^2+c^2} \tan (d+e x) b+(a-c) \left (a-c+\sqrt {a^2-2 c a+b^2+c^2}\right )}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{2 \sqrt {a^2-2 a c+b^2+c^2}}+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {\int \frac {b^2-\sqrt {a^2-2 c a+b^2+c^2} \tan (d+e x) b+(a-c) \left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right )}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{2 \sqrt {a^2-2 a c+b^2+c^2}}+\frac {\int \frac {b^2+\sqrt {a^2-2 c a+b^2+c^2} \tan (d+e x) b+(a-c) \left (a-c+\sqrt {a^2-2 c a+b^2+c^2}\right )}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{2 \sqrt {a^2-2 a c+b^2+c^2}}+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}\)

\(\Big \downarrow \) 1363

\(\displaystyle \frac {-b \left ((a-c) \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2\right ) \int \frac {1}{\frac {b \left (\sqrt {a^2-2 c a+b^2+c^2} b+\left (b^2+(a-c) \left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right )\right ) \tan (d+e x)\right )^2}{c \tan ^2(d+e x)+b \tan (d+e x)+a}-2 b \sqrt {a^2-2 c a+b^2+c^2} \left (b^2+(a-c) \left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right )\right )}d\left (-\frac {\sqrt {a^2-2 c a+b^2+c^2} b+\left (b^2+(a-c) \left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right )\right ) \tan (d+e x)}{\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}\right )-b \left ((a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2\right ) \int \frac {1}{\frac {b \left (b \sqrt {a^2-2 c a+b^2+c^2}-\left (b^2+(a-c) \left (a-c+\sqrt {a^2-2 c a+b^2+c^2}\right )\right ) \tan (d+e x)\right )^2}{c \tan ^2(d+e x)+b \tan (d+e x)+a}+2 b \sqrt {a^2-2 c a+b^2+c^2} \left (b^2+(a-c) \left (a-c+\sqrt {a^2-2 c a+b^2+c^2}\right )\right )}d\frac {b \sqrt {a^2-2 c a+b^2+c^2}-\left (b^2+(a-c) \left (a-c+\sqrt {a^2-2 c a+b^2+c^2}\right )\right ) \tan (d+e x)}{\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {-b \left ((a-c) \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2\right ) \int \frac {1}{\frac {b \left (\sqrt {a^2-2 c a+b^2+c^2} b+\left (b^2+(a-c) \left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right )\right ) \tan (d+e x)\right )^2}{c \tan ^2(d+e x)+b \tan (d+e x)+a}-2 b \sqrt {a^2-2 c a+b^2+c^2} \left (b^2+(a-c) \left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right )\right )}d\left (-\frac {\sqrt {a^2-2 c a+b^2+c^2} b+\left (b^2+(a-c) \left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right )\right ) \tan (d+e x)}{\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}\right )-\frac {\left ((a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2\right ) \arctan \left (\frac {b \sqrt {a^2-2 a c+b^2+c^2}-\left ((a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2\right ) \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2}}+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {-\frac {\left ((a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2\right ) \arctan \left (\frac {b \sqrt {a^2-2 a c+b^2+c^2}-\left ((a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2\right ) \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2}}-\frac {\left ((a-c) \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2\right ) \text {arctanh}\left (\frac {\left ((a-c) \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2\right ) \tan (d+e x)+b \sqrt {a^2-2 a c+b^2+c^2}}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2}}+\sqrt {c} \text {arctanh}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}\)

input
Int[Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]
 
output
(-(((b^2 + (a - c)*(a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]))*ArcTan[(b*Sqrt 
[a^2 + b^2 - 2*a*c + c^2] - (b^2 + (a - c)*(a - c + Sqrt[a^2 + b^2 - 2*a*c 
 + c^2]))*Tan[d + e*x])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 
+ b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 - 
2*a*c + c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*(a^ 
2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a* 
c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2])])) + Sqrt[c]*ArcTanh[( 
b + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^ 
2])] - ((b^2 + (a - c)*(a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]))*ArcTanh[(b 
*Sqrt[a^2 + b^2 - 2*a*c + c^2] + (b^2 + (a - c)*(a - c - Sqrt[a^2 + b^2 - 
2*a*c + c^2]))*Tan[d + e*x])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt 
[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b 
^2 - 2*a*c + c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2 
]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 
 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2])]))/e
 

3.1.6.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1321
Int[Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]/((d_) + (f_.)*(x_)^2), x_Symbol] 
 :> Simp[c/f   Int[1/Sqrt[a + b*x + c*x^2], x], x] - Simp[1/f   Int[(c*d - 
a*f - b*f*x)/(Sqrt[a + b*x + c*x^2]*(d + f*x^2)), x], x] /; FreeQ[{a, b, c, 
 d, f}, x] && NeQ[b^2 - 4*a*c, 0]
 

rule 1363
Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f 
_.)*(x_)^2]), x_Symbol] :> Simp[-2*a*g*h   Subst[Int[1/Simp[2*a^2*g*h*c + a 
*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; FreeQ 
[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]
 

rule 1369
Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + ( 
f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Simp 
[1/(2*q)   Int[Simp[(-a)*h*e - g*(c*d - a*f - q) + (h*(c*d - a*f + q) - g*c 
*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Simp[1/(2*q)   Int[ 
Simp[(-a)*h*e - g*(c*d - a*f + q) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + 
 c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] 
&& NeQ[e^2 - 4*d*f, 0] && NegQ[(-a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4853
Int[u_, x_Symbol] :> With[{v = FunctionOfTrig[u, x]}, Simp[With[{d = FreeFa 
ctors[Tan[v], x]}, d/Coefficient[v, x, 1]   Subst[Int[SubstFor[1/(1 + d^2*x 
^2), Tan[v]/d, u, x], x], x, Tan[v]/d]], x] /;  !FalseQ[v] && FunctionOfQ[N 
onfreeFactors[Tan[v], x], u, x, True] && TryPureTanSubst[ActivateTrig[u], x 
]]
 
3.1.6.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 1.57 (sec) , antiderivative size = 17248000, normalized size of antiderivative = 30048.78

\[\text {output too large to display}\]

input
int((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x)
 
output
result too large to display
 
3.1.6.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2273 vs. \(2 (516) = 1032\).

Time = 0.57 (sec) , antiderivative size = 4547, normalized size of antiderivative = 7.92 \[ \int \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\text {Too large to display} \]

input
integrate((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="fricas")
 
output
[1/4*(e*sqrt((e^2*sqrt(-b^2/e^4) - a + c)/e^2)*log((2*(4*a^3*b^2 + 2*a*b^4 
 + 2*b^4*c - 4*a*b^2*c^2 - (4*a^4*b + 3*a^2*b^3 + b^5 + (4*a^2*b - b^3)*c^ 
2 - 2*(4*a^3*b + 3*a*b^3)*c)*tan(e*x + d) + (2*(2*a^3*b + a*b^3 + b^3*c - 
2*a*b*c^2)*e^2*tan(e*x + d) + (4*a^4 + 3*a^2*b^2 + b^4 + (4*a^2 - b^2)*c^2 
 - 2*(4*a^3 + 3*a*b^2)*c)*e^2)*sqrt(-b^2/e^4))*sqrt(c*tan(e*x + d)^2 + b*t 
an(e*x + d) + a) + ((b^5 + 2*(4*a^2*b - b^3)*c^2 - 2*(4*a^3*b + 5*a*b^3)*c 
)*e*tan(e*x + d)^2 - 4*(2*a^3*b^2 + a*b^4 + b^4*c - 2*a*b^2*c^2)*e*tan(e*x 
 + d) - (8*a^4*b + 6*a^2*b^3 + b^5 - 2*(4*a^3*b + a*b^3)*c)*e - ((4*a^3*b 
+ 3*a*b^3 - 8*a*b*c^2 - (4*a^2*b - 3*b^3)*c)*e^3*tan(e*x + d)^2 + 2*(4*a^4 
 + 3*a^2*b^2 + b^4 + (4*a^2 - b^2)*c^2 - 2*(4*a^3 + 3*a*b^2)*c)*e^3*tan(e* 
x + d) - (4*a^3*b + a*b^3 + (4*a^2*b + b^3)*c)*e^3)*sqrt(-b^2/e^4))*sqrt(( 
e^2*sqrt(-b^2/e^4) - a + c)/e^2))/(tan(e*x + d)^2 + 1)) - e*sqrt((e^2*sqrt 
(-b^2/e^4) - a + c)/e^2)*log((2*(4*a^3*b^2 + 2*a*b^4 + 2*b^4*c - 4*a*b^2*c 
^2 - (4*a^4*b + 3*a^2*b^3 + b^5 + (4*a^2*b - b^3)*c^2 - 2*(4*a^3*b + 3*a*b 
^3)*c)*tan(e*x + d) + (2*(2*a^3*b + a*b^3 + b^3*c - 2*a*b*c^2)*e^2*tan(e*x 
 + d) + (4*a^4 + 3*a^2*b^2 + b^4 + (4*a^2 - b^2)*c^2 - 2*(4*a^3 + 3*a*b^2) 
*c)*e^2)*sqrt(-b^2/e^4))*sqrt(c*tan(e*x + d)^2 + b*tan(e*x + d) + a) - ((b 
^5 + 2*(4*a^2*b - b^3)*c^2 - 2*(4*a^3*b + 5*a*b^3)*c)*e*tan(e*x + d)^2 - 4 
*(2*a^3*b^2 + a*b^4 + b^4*c - 2*a*b^2*c^2)*e*tan(e*x + d) - (8*a^4*b + 6*a 
^2*b^3 + b^5 - 2*(4*a^3*b + a*b^3)*c)*e - ((4*a^3*b + 3*a*b^3 - 8*a*b*c...
 
3.1.6.6 Sympy [F]

\[ \int \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\int \sqrt {a + b \tan {\left (d + e x \right )} + c \tan ^{2}{\left (d + e x \right )}}\, dx \]

input
integrate((a+b*tan(e*x+d)+c*tan(e*x+d)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*tan(d + e*x) + c*tan(d + e*x)**2), x)
 
3.1.6.7 Maxima [F(-2)]

Exception generated. \[ \int \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume((c-b-a)*(c+b-a)>0)', see `assume 
?` for mor
 
3.1.6.8 Giac [F]

\[ \int \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\int { \sqrt {c \tan \left (e x + d\right )^{2} + b \tan \left (e x + d\right ) + a} \,d x } \]

input
integrate((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(c*tan(e*x + d)^2 + b*tan(e*x + d) + a), x)
 
3.1.6.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\int \sqrt {c\,{\mathrm {tan}\left (d+e\,x\right )}^2+b\,\mathrm {tan}\left (d+e\,x\right )+a} \,d x \]

input
int((a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2),x)
 
output
int((a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2), x)